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We study the stability of a motionless liquid below its vapour between heated 
horizontal plates. The temperature of the bottom plate is held below the vaporization 
temperature and the top plate is hotter than the vaporization temperature. A water 
film is on the cold plate and a vapour film on the hot plate. We find a basic solution 
depending only on the variable y normal to the plates, with steady distributions of 
temperature, a null velocity and no phase change. The linear stability of this basic 
state is studied in the frame of incompressible fluid dynamics, without convection, 
but allowing for phase change. An ambiguity in the choice of the conditions to be 
required of the temperature at the phase-change boundary is identified and 
discussed. It is shown that the basic state of equilibrium is overstable under 
conditions of large temperature gradient, when the other parameters have suitable 
values. An analysis of the energy of the most dangerous disturbance shows that the 
source of the instability is associated with change of phase. 

1. Introduction 
There have been many studies of the stability problem for laminar film 

condensation or vaporization (Nusselt’s solution) on an inclined cool or hot plate (see 
Unsal & Thomas 1980 for a fairly thorough review of this literature) and of a falling 
film of liquid along an inclined plate, which was decisively analysed by Yih (1955, 
1963) and Benjamin (1957). Yih’s problem has been generalized to a two-fluid 
channel flow problem for horizontal and vertical cases (see Blennerhassett 1980 ; 
Renardy 1987). Problems of the Yih type have fully developed basic flows but no 
phase change, and a temperature equation is not needed. Laminar film condensation 
is a phase-change problem, but it is posed in a semi-infinite region which excludes the 
existence of a fully developed steady flow; in the basic flow there is a continuous 
change of phase a t  the interface, so that the stability analysis of this problem is 
difficult and is treated in a quasi-steady approximation. In many of the film 
condensation studies the vapour phase was inactive. 

The paper of Busse & Schubert (1971) was the first to address the problem of the 
influence of phase change on thermal convection. They generalized the usual 
Rayleigh-BBnard problem by including a contribution of the latent heat from phase 
transformation in the energy balance at the interface. They restricted their 
consideration to the case when the viscosity and thermal conductivity of the two 
phases are the same and assumed that the difference in density between the two 
phases is small relative to the mean density. In  fact, the densities are implicitly taken 
to be equal across the interface in the mass balance equation so that the normal 
component of velocity across the interface is continuous, consistent with our (2.4) 
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when either p1 = pz or the interface is stationary (2.7). Busse & Schubert assumed 
exchange of stability in their problem. In  our problem this assumption is not correct 
and the loss of stability occurs always as overstability. Nevertheless their analysis 
showed that the fluid layer can be unstable even when the less dense phase lies above. 

A number of papers have appeared in the last 20 years on the problem of mantle 
convection with phase change and related problems. The literature of this topic is 
cited in the list of references in Sotin & Parmentier (1989). All but one of these cited 
papers restricted their considerations to the case of small density differences in which 
the term (p, - p 2 )  up- n in our (2.4) may be thought to be negligible. The one exception 
is the paper on geothermal systems, treated as a porous media problem, by Schubert 
& Straus (1980) in which the density difference is large and (2.4) is not simplified. The 
goal of all the authors was to find the effects of phase change on convection. 

The goal of this work is different; we are interested in constructing a relatively 
more rigorous analysis without making the assumptions which are used either in the 
film condensation studies or in the geophysical phase-change literature. Here the 
phase-change mechanism is isolated, by putting the buoyant terms of the 
Oberbeck-Boussinesq equation to zero. This procedure has been used frequently 
before in the literature on film condensation. In  the course of our study we came to 
realize that the correct conditions on the temperature a t  a phase-change boundary 
are not known. There are different possibilities. If we require that the temperature 
a t  a phase boundary is in thermodynamic equilibrium, then the saturation 
temperature is uniquely determined by the pressure through the Clapeyron relation. 
If the pressure on the water side is different than on the vapour side, as in our 
stability study, the temperature will be discontinuous. We can choose only two 
conditions for the temperature at a phase change boundary, so the thermodynamic 
equilibrium (the Clapeyron relation) excludes thermal equilibrium (continuity of 
temperature). This issue seems not to have been addressed in the flm condensation 
literature or the geophysical phase-change literature, where it is conventional to 
require thermal equilibrium between water and its vapour together with thermo- 
dynamic equilibrium for the vapour, but not the water; that is, the temperature 
of the water is at the saturation value appropriate to pressure in the vapour (see 
Plesset & Zwick 1954; Gebhart 1971 ; Ishii 1975). In every study of this problem 
known to us the two phases are required to be in thermal equilibrium, the 
temperature must be continuous across the phase-change interface. But temperature 
discontinuities cannot be eliminated by rigorous application of first principles. 
Schrage (1953) says ‘There is no reason why the temperature of the gas phase should 
necessarily be the same as that of the liquid or solid surface in all cases. ’ Indeed, 
classic kinetic theory calculations (see Hirschfelder, Curtis & Bird 1954; Pao 1971 ; 
Aoki & Cercignani 1983; Onishi 1984 and Cercignani, Fiszdon & Frezzotti 1985) 
indicate that for a monatomic vapour large temperature jumps exist at  interfaces. 
Shankar & Deshpande (1990) have measured the temperature distribution in the 
vapour between an evaporating liquid surface and a cooler condensing surface in 
water, Freon 113 and mercury. The temperature profiles obtained in mercury showed 
jumps a t  the interface as large as almost 50 % of the applied temperature difference. 

In the present study we allow phase change, and the vapour phase is active. The 
second wall allows the system to attain a steady fully developed basic state. We are 
not in the frame of laminar film condensation because phase changes do not occur in 
the basic flow. We carried out calculations for three cases: when the water and 
v a ,  our are at saturation values corresponding to their own pressures (thermo- 
dynamic equilibrium) and when the vapour or the water is at saturation and the 
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temperature is continuous (thermal equilibrium). The results of the stability analysis 
do not depend strongly on the choice of the three aforementioned conditions for the 
temperature at the interface in the case of water and water vapour. 

2. Governing equations and basic solution 
We assume that physical properties of the fluids, i.e. the viscosity, density and 

conductivity, are constants independent of pressure and temperature, as is usually 
done in film condensation problems. This means that the pressure will be a dynamical 
variable uncoupled from thermodynamics and that convective currents set up by the 
action of gravity on thermally induced variations of density will be ignored. 

We consider two-dimensional flow, and its physical configuration is shown in figure 
1. The velocities of both phases satisfy the incompressible Navier-Stokes equations : 

v - u  = 0, (2.1) 

du 
p- dt = -Vp+pg$pV2u. 

In the temperature equation we shall neglect the dissipation term: 

dT 
dt 

pC -= kV2T. 

At the interface I (z ,  t) = y-H(z, t )  = 0 we have mass, momentum and energy 
balances (see Joseph 1990) (in what follows subscript i = 1 or 2 refers to vapour or 
water respectively) : 

mass : -riz(x,t) = pl(ul-uu,).n = p2(u2-uu,)*n, (2.4) 
momentum : ritl[u] - l~p] n + 2&D[u] - n] = 2Bun, (2.5) 
energy : - [ k V q  - n = 2 b ( ~  - ~ u , )  * D[u] * n] + riz[h + !jlu - u,$], (2.6) 

where f? is the mean curvature of the interface, u is the surface tension coefficient, 
and n is the normal of the interface directed from vapour to water, I[.] is defined as 
( * )1 - ( * )2 .  uz can be regarded as the interface velocity, which satisfies 

In general the fluid velocity u + uZ, because of mass accretion or depletion, but we 
may assume that the interface and fluid have the same tangential component of 
velocity, (u-uu,).t = 0 on the interface. Then 

l[u]l- t = 0, (2.8) 
where t is tangent on the interface. 
As we have mentioned before we do not know what condition the temperature 

should satisfy at the interface. In  this study we shall consider three different choices 
of the interfacial temperature conditions, referred as cases I, 11,111, where T, is the 
vaporization temperature : 

Case I. Thermodynamic equilibrium of both phases 

T,, = W). (2.9) 

[a = 0, = T(Pl).  (2.10) 

Case 11. Thermal equilibrium and thermodynamic equilibrium of vapour 
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FIQURE 1. The physical configuration of this two-phase flow problem. 

Case 111. Thermal equilibrium and thermodynamic equilibrium of water 

nTD = 0, T, = TPJ,  
and compare the results. 

Boundary conditions are 

a t  y = 0, 

a t  y = R, 

u2 = v2 = 0, 

u1 = v1 = 0, 
T, = T-, 

= T+. 

There is a steady, developed, motionless solution 

(u, v ,  P, T ,  H )  = (0, o,p,  T ,  H,) 
where H ,  is a constant : 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

The pressure P is just the hydrostatic pressure. At the vapour-water interface 
y = H,,  = T, = T,, the pressure is continuous, and the basic flow is in 
thermodynamic equilibrium with 

T,  = T(P(H,)) ,  rit = 0. (2.16) 

So the different choices of interfacial temperature conditions give rise to the same 
basic state. 

3. Perturbation equations and normal modes 
To make our equations dimensionless we use following scales : length, H ,  ; velocity, 

V, = p l ~ / ( p l H O m ) ;  time, H o / & ;  pressure, pi q, where i = 1 (vapour) or 2 (water); 
temperature, T, - T-. 
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The dimensionless parameters listed below will appear in the dimensionless 
equations : 

density ratio g = PZ/Pl, 
viscosity ratio m = PS/Pl, 
Reynolds number Ri = Pi KJOlPu,, 

pr, = P, C,/k,, 

w = VPlHO m"(P; PI, 

Prandtl number 
PBcle t number Pe, = R, Pri , 
Weber number 

thermal conductivity ratio 6 = k, /k , ,  
heat of vaporization number r = k, T,m(l -72)/(chfgp1), 

dimensionless slope of 
the Clapeyron curve 

n, = 

gravity number 0 = SP;Him2/(P;P), 
hot-wall temperature ratio 
cold-wall temperature ratio 

relative distance between 

7, = T+/T,, 
7, = T-/T,, 

R 7,-1 r = - = l +  
the two plates Ho f ( l - 7 2 ) '  

parameters as their published values at T, = 100 "C, 
If we specify the fluids as water and water vapour and take all their material 

p1 = 0.585 g/m3, 
,ul = 0.0125 cP, 
k,  = 2.5 x J/cm s "C, k, = 6.8 x J/cm s "C, 
C,, = 1.96 J/g "C, 
h,, = 2.257 x lo3 J/g, 

P, = 0.965 g/cm3, 
,u2 = 0.28 cP, 

C,, = 4.18 J/g "C, 
u = 64.4 dynes/cm, 

we are left with three independent parameters: H,, r ,  7e; and 

6 = 1.65 x lo3, m = 22.4, f = 27.2, 
are constants and 

W = 4.84 x lo4 H,, r = 4.6 x lO-'(l -7,) ,  G = 4.34 x lo6 H i ,  
1 , n,= l .69~1O-*H-~- ,  1 l7, = 1.0 x H-' - 

1-7, 1-7, 
where H,, is measured in m. 

The basic temperature profile in dimensionless form is given by 
7, 7,-1r-y 

1-7, 1-7,r-1'  
T,(y) = ---- 
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we get the following equations for the amplitudes u(y), v(y), p(y), O(y) and h:  

au+v’ = 0, 

-acu = -ap+-(a2u-u”), 
i 
R 

1 
-acv = p’+-(a2w-vUX), (3.5) R 

together with boundary conditions 

and 

and interface conditions at y = 1 : 

2 - -“p]-(Wa”+(g-l))h = 0, KI 

(3.9) 
(3.10) 
(3.11) 

(3.12) 

IlJ@’] - i(ach + wl) = 0. (3.13) 

Temperature conditions will be chosen from following : 

0,=17,pt+(-T;-17,d)h, i =  1or2 ,  (3.14) 
(3.15) [On + [dT/dy] h = 0. 

We can eliminate u and p from (3.3)-(3.6), and get following equations: 

d4)-2u2v”+a4v = iacR(a2w -w”), (3.16) 
(3.17) 8” - u28 - i P e  v T  = - iacPe 8. 

We introduce and 9 by defining 

02’ = a2 - iacR and f 2  = a2 - iuc Pe.  

The general solution of this system must have following form: 

(3.18) v(y) = A eag +B e-ag + c edg +D e-dg, 1 
O(y) = Bef’+Fe-YY+$(y), J 

where 
ac 

. 

Substituting these expressions into the boundary and interfacial equations forms 
an eigenvalue problem for a 13 x 13 matrix : the 13 unknowns are the coefficients A ,  
B, C, D ,  E ,  F of the vapour and water phases and the interface position variable h. 
We cannot solve this matrix analytically; however, for each set of parameter, we can 
obtain the eigenvalues of this matrix numerically. 
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4. Long waves 
For long-wave disturbances (a  = 0) ,  the system is slightly different. We are able to 

calculate the determinant of the 13 x 13 matrix and obtain an explicit equation for 
the zeroth-order term of ac in the long-wave expansion, which agrees with the 
general solution (3.18). 

Suppose v,(y), B,(y), ho are the zeroth-order terms in the long-wave expansion, and 
a. is the leading order of a c  in the expansion. At this order, the system becomes 

v t  = --a, RvS (4.1) 

d T  
81;-iPev,- = -ia,PeB,. 

dY 

This system admits a solution in the following form: 

vo(y) = ~ e i b v + ~ e + + c y + ~ ,  (4.3) 

e,(y) = Eeidv++Pe-idU+60(y), (4.4) 

where p” = ia, R, q52 = ia, Pe. Bringing this expression into the boundary and 
interface conditions, after some manipulating, we find that the eigenvalue a. satisfies 
the following equation : 

((6 4 t ( ,2iA(l-r) - 1) (e2ibz + 1) - (e2ibl(1-r) + 1 ) (e2ibz - 1)) 

x {ht(e2idi(1-r) + 1) (ezidz- 1) -  (e2idi(l-r) - 1) (e2&+ 1)) = 0, (4.5) 

where h = ~~(C,,/C,,) is a constant. Note that a, = 1 is a solution of (4.5) and only 
r appears as a parameter. We traced this zero eigenvalue numerically, increasing a,  
and found that the real part becomes negative and with a non-zero imaginary part. 
For any given T ,  we can solve the above equation and get all the other eigenvalues, 
and they are all negative. This shows that long-wave disturbances are neutrally 
stable at  zeroth order. 

5. Energy analysis 
The key to understanding the predictions of the linear theory of stability is the 

determination of the maximum growth rate in unstable cases. This gives rise to a 
distinguished length and wave speed and when combined with an energy analysis of 
this fastest growing mode, it can even be used to forecast the flow type. The energy 
analysis in this problem is different than some other two-fluid problems (see Hu & 
Joseph 1989) because the temperature or thermal energy equation is coupled to 
mechanical energy through the mechanism of phase change. In this case we may get 
two energy balances, one for mechanical energy designated with a subscript M and 
another for thermal energy designated with subscript T. Suppose (u, v, 6 )  are the 
components of an eigenvector associated with the maximum growth rate ; 
multiplying (3.4) and (3.5) by u* and v*, the complex conjugates of u and v 
respectively, and integrating the sum of them over both the liquid and vapour 
regions, we get 

(5.1) 
where ( ) = $, +$,; u2 = uu*, v2 = vv*. The imaginary part of the left-hand side of 



242 A .  Huang and D. D .  Joseph 

(5.1) represents the growth rate of the energy of the interface and the right-hand side - _ _  
may be split into two parts 
where 

EM = BM-DM, 

DM = (:(a2(.. + v2) + g1 + ($1)) (viscous dissipation rate), 

BM = - Im { i[: (du* + dv*) - I[&w*] (energy production at the interface). n i  
We may transform the last term of BM as follows: 

where [&I can be evaluated from the jump condition (3.12) as 
Icpv*n = acpn vz* + nv*n P,, 

2 -d - ( a 2 W + d ( c - 1 ) ) h .  [E ] 
Then B ,  can be further decomposed into four parts : 

where B, = -a2WIm (hv:) 
can be regarded as the energy supply rate due to the surface tension; 

BM =B,+Ph+B,+G,  

(’ - 5) =Im (iiEyn * pl) Ph = Im (I[v*] pl) = 
5 

arises from phase change ; 

represents interfacial friction due to the viscosity difference ; and 

is the gravity term. Then (5.2) becomes 
G = &(l-g)Im(hv:) 

EM = B, + Ph+B2 + G-DM. 
Similarly we get the energy balance for the temperature disturbance as 

which can be written as 
ET = IT-DT+BT, 

where 

6. Results and discussion 
We first compared results for three different choices of the interfacial temperature. 

We found that the difference between water and its vapour is rather small. Table 1 
displays a comparison for some typical parameter values. Case I is the case when 
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::::il 0.08 

"i. 0.02 

U / 

0 0.001 0.002 0.003 
Wavenumber, a 

FIGURE 2. Neutral curve when H, = 0.001 m, r = 1.3, 0 = 0.00434, W = 48.4; r, l7, and l7, 
change with (1 - T ~ ) .  U denotes unstable, S stable. 

Eigenvalue with the maximum growth rate 

Parameters Case I Case I1 Case I11 

H, = 0.001 m 
a = 0.001 
r = 1.10 

conditions 

H, = 0.0001 m 
a = 0.0005 
r = 1.10 

TABLE 1. Comparison of the results from three different choices of interfacial temperature 

k3.2593 x k 3.2592 x lo-', f 3.2592 x lo-', 
3.9424i x 3.9430i x low4 3.9424i x 

f 1.8923 x & 1.8916 x f 1.8921 x lo-', 
- 1.3569i x - 1.3572i x - 1.3569i x 

I 
I 

To = 0.99 

T2 = 0.99 

thermodynamic equilibrium is required for both phases, case I1 is when temperature 
continuity replaces thermodynamio equilibrium in the water, and case I11 is when 
temperature continuity replaces thermodynamic equilibrium in the vapour. The fact 
that the differences between the three cases are small is understandable because the 
parameters Z7, and Z7, are small. This implies that the influence of saturation 
pressure on the saturation temperature is negligible. 

In  the following we shall present results only for case 11, which is the case usually 
treated in the literature on film condensation. We have three independent 
parameters: H,, T ,  72. First we consider the case when H, and T are fixed, 7, is the 
parameter, and get the neutral curve shown in figure 2. The energy analysis (tables 
2, 3) shows that the instability is solely caused by the phase-change term. Note that 
both parameters n,, r change with 7,; however, for this parameter range Z7, is 
usually rather small. It follows that in the range of parameters under consideration 
r is the main stability parameter. This can also be seen from (5.6) which shows that 
the phase change term is 'directly proportional to' r. The flow gets more unstable 
when r is larger. 

We also considered the case when H ,  and T~ are fixed and r varies. The result is 
shown as figure 3. The conclusion is more clearly seen in figure 4, which gives the 
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1 I I 
0.001 0.01 

Wavenumber, a 

FIGURE 3. Neutrtl curve when T~ (i.e. the temperature of the lower plane) is fixed (0.95) : 
H, = 0.001 m, G = 0.00434, W = 48.4, r = 0.231 x Z7, = 0.2 x l7, = 0.0338. 

0.10 

0.001 ‘ I 
1 2 

r 

FIGURE 4. Neutral curve when H ,  = 0.001 m, G” = 0.00434, W = 48.4. 

neutral curve when H ,  is fixed, r and r2 are control parameters. Each point of the 
curve is a critical point. The most unstable configuration is one with a finite but very 
thin layer of vapour. 

Very thick and very thin vapour layers are stable. This is probably a manifestation 
of limiting behaviour in which layers with only water and only vapour are stable. The 
longest waves (very small a) are always stable but the system is most unstable to 
long waves of finite length. 

Tables 2 and 3 are results of the energy analysis of the mode with maximum 
growth rate. Note that the mechanical energy terms are normalized so that the 
viscous dissipation term D, = 1, and D, was used to normalize (5.11). The phase- 
change term Ph is dominant and destabilizing. The surface tension term B, and 
gravity Q are stabilizing but of negligible magnitude compared with the phase- 
change term. The energy balance is essentially a balance between the phase-change 
term and the viscous dissipation. This also helps to explain the fact that the stability 
does not change much with H ,  (compare table 2 and table 3) when r and 72 are fixed 
because H ,  appears through W and d which represent surface tension and gravity 
respectively, both of which are insignificant in the energy balance. 
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1-r2 oi Ec, E m  Bl Ph 

0.017 3.6 x 1.3 x 10-6 8.9 x -3.9 x lo-'' 1.00 
0.030 1.1 x 10-4 5.0 x 10-4 1.7 x 10-1 -3.3 x 10-13 1.17 
0.040 1.9 x 10-4 1.0 x 10-3 2.3 x 10-1 - 1.2 x 10-12 1.23 
0.070 5.7 x 4 . 0 ~  2.8 x lo-' -1.1 x lo-" 1.34 

1 - re B2 G f B T  I T  - D T  

0.017 1.8 x -4.5 x lo-' 5.5 X lo-' 1.0 -9.9 x lo-' 
0.030 - 1.5 x lo-' -4.2 x 6.9 x 1.0 -9.9 x 10-1 
0.040 6.9 x 10-6 -5.0 x 10-4 8.2 x 10-4 1.0 -9.9 x 10-1 
0.070 -3.0 x -5.1 x 1.0 x 1.0 -9.9 x 10-1 

TA_BLE 2. Energy analysis for the mode of maximum growth rate in the case when H, = 0.01 m, 
G = 4.34, W = 484 and r1 = 1.2. di is the wavenumber for which the growth rate is maximum 

1 - r ,  E dc, E m  Bl Ph 

0.030 1.1 x 5 . 0 ~  lo-* 1.6 x lo-' - 3 . 4 ~  lo-'' 1.16 

0.070 5.2 x 4.0 x 3.8 x lo-' - 1 .O x 1.38 

0.017 3.6 x 10-4 1.6 x 10-6 1.2 x 10-3 -4.6 x 10-13 1.00 

0.040 1.8 x 10-3 1.1 x 10-3 2.4 x 10-1 -1.1 x 10-9 1.24 

1 - r2 B2 G f BT IT - D T  

0.017 +2.0 x -5.5 x lo-' 7.1 x 10-6 1.0 -9.99 x 10-1 
0.030 - 1.5 x lo-' -4.2 x 6.9 x 1.0 -9.99 x lo-' 
0.040 4.6 x 10-6 -5.2 x 10-4 8.2 x 10-4 1.0 -9.99 x 10-1 
0.070 +3.5 x 10-6 -5.6 x 10-4 1.0 x 10-3 1.0 -9.99 x 10-1 

TABLE 3. Same as table 2 except H, = 0.001 m, 6 = 0.00434, W = 48.4 and 71 = 1.2 

7. Conclusions 
The influence on the flow stability of phase change has long been a major concern 

in the studies of film condensation or evaporization. However, it seems that previous 
studies (Unsal & Thomas 1978, 1980) were restricted to cases when the flow domain 
was semi-infinite. The basic flow in that case (usually Nusselt's solution) is not 
steady, the water film is continuously evaporating or condensing and it is found that 
condensation is stabilizing and vaporization is destabilizing (Unsal & Thomas 1978, 
1980). 

The problem of the influence of phase change on thermal convection has been 
considered in the literature on geophysical fluid mechanics (see Sotin & Parmentier 
1989 for references), starting with the work of Busse & Schubert (1971). The 
assumptions of these authors, i.e. small density differences for all authors but 
Schubert & Straus (1980) and Darcy's law for Schubert & Straus, seem to be 
compatible with the assumption that the marginal eigenfunctions are steady at 
criticality, i.e. exchange of stability. This assumption is not correct in the problem 
of phase change between water and vapour, which is treated here. In our problem 
instability occurs with complex eigenvalues (see table l), which means that either 
standing or travelling waves can be expected when the steady state loses stability. 
The choice between standing and travelling wave awaits further nonlinear studies of 
bifurcation. 

The issue of interfacial temperature conditions we believe is an important one, 
which has recently been considered for general phase problems by Truskinovsky 
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(1991). The problem arises whenever a pressure jump across the interface is allowed 
even when the phases are solid or liquid. If the pressures on each side of the interface 
are different and the temperature is at  saturation, then there must be a discontinuity 
of temperature. Different choices of thermal boundary conditions are possible. 
Although in the special case treated here, water and its vapour, the stability results 
do not depend strongly on the choice of conditions on the temperature at the 
interface, we do not expect weak dependence in general especially when the 
dependence of the saturation temperature on the pressure is not small. The choice of 
temperature conditions at a phase-change boundary goes beyond continuum 
thermomechanics and appears to require some form of molecular theory. 

This work was supported under grants from the Department of Energy, the National 
Science Foundation, the US Army Research Office, AHPCRC and the Supercomputer 
Institute of the University of Minnesota. 
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